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The shock propagation theory of Brinkley & Kirkwood (1947) is extended to 
provide a uniformly valid analytic solution of point-explosion problems both 
when the undisturbed medium is uniform and when it is stratified. This is 
achieved mainly by selecting the parameter expressing a similarity restraint in 
this theory such that initially it gives precisely the Taylor-Sedov solution, while 
asymptotically, in the weak regime, still retaining the well-known Landau- 
Whitham-Sedov form of the solution for shock overpressure. The shock over- 
pressure, as calculated by the present method for spherical and cylindrical blast 
waves in the entire regime from the point of explosion to where they have become 
very weak, shows excellent agreement with that from the exact numerical solu- 
tions of Lutzky & Lehto (1968) and Plooster (1970). The solution for a spherical 
shock propagating inan exponential atmosphere stratified by a constant accelera- 
tion due to gravity also shows a good agreement with the exact numerical solution 
of Lutzky & Lehto. 

1. Introduction 
The propagation of a blast wave has been studied by a number of investigators, 

particularly since World War 11. The governing nonlinear partial differential 
equations with the boundary conditions on the unknown shock surface (the 
Rankine-Hugoniot conditions) pose such serious mathematical difficulties that, 
even with the simplified physical assumption that the entire energy of the blast is 
released a t  a point, a uniformly valid analytic solution has not been found. The 
well-known Taylor-Sedov solution for a point explosion, based on similarity and 
dimensional considerations, shows good agreement with the experimentally 
measured shock trajectory only up to a few tens of metres. Sakurai (1953, 1954, 
1965) attempted to improve upon this solution by a perturbation technique with 
the inverse square of the shock Mach number as the perturbation parameter. 
The solution was thus rendered more accurate for greater distances from the point 
of explosion but soon began to depart from the exact numerical solution. On the 
other hand, Landau (1945)) Whitham (1950) and Sedov (1959), with different 
approaches, obtained an asymptotic form of the solution in the weak shock 
regime when the blast has propagated far from the source. It is the intermediate 
shock-strength regime which has eluded an analytic treatment. For the inhomo- 
geneous medium a few similarity solutions for the blast wave (see Sedov 1959) 
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have been obtained but these are special solutions, valid only under restrictive 
similarity conditions. Laumbach & Probstein (1 969) have recently given an 
analytic approach for strong shock propagation in an exponential medium. This 
approach is based on the assumption that almost the entire mass of the blast is 
concentrated on the shock surface, an assumption similar to that of Chernyi 
(1 959), who employed a perturbation technique to study shock propagation. 

When looking for an analytic approach which would be uniformly valid over 
the entire course of the blast propagation it was realized that the shock propaga- 
tion theory of Brinkley & Kirkwood (1947) provided an appropriate framework. 
This theory had, however, to be suitably modified to meet the above requirement 
-a  task similar to that of Hayes (1968), who modified the well-known Chisnell, 
Chester & Whitham method for shock propagation in the light of his exact 
numerical calculations. This method, however, is suitable only for taking into 
account the local non-uniformities which the shock encounters as it propagates, 
and is not capable of treating the blast-wave problem. 

The Brinkley-Kirkwood (BK) theory for one-dimensional spherical, cylindrical 
and plane symmetric cases may be summarized as follows. The hydrodynamic 
equations of motion and continuity are specialized at  the shock front and the 
Rankine-Hugoniot equation, expressing the conservation of momentum across 
the shock, is differentiated such that the shock is stationary to provide three 
equations for the four partial derivatives of pressure and velocity with respect to 
time and distance at  the shock front. A fourth approximate equation is obtained 
by imposing a similarity constraint on the energy-time curve. These equations 
are solved simultaneously to obtain the variation of shock overpressure with 
distance. Also, the rate of decay of shock energy is obtained by the following 
consideration. As a particle crosses a shock its entropy and internal energy 
increase. This particle, with the new value of entropy, expands adiabatically until 
it comes to its original pressure (but higher temperature) and then it radiates 
energy at constant pressure, finally assuming its ambient value of pressure and 
specific volume. (This modified argument is due t o  Schatzman (1949).) Taylor 
(1950) has also used the same p ,  v path to evaluate the part of explosion energy 
which is degraded as heat and is thus not available for doing work as the shock 
propagates. This process is expressed mathematically as an equation describing 
the dissipation of the energy of explosion as heat. Besides this idealization of the 
particle path in the p ,  v plane, the similarity restraint mentioned above refers to 
the observation that the parameter 

where f (R ,  7) = r"p'u'/R'pu is the energy-time integrand normalized by its peak 
value Rzpu at the shock front, and expressed as a function of distance R and 
a reduced time r which normalizes its initial slope to  - 1, is a very slowly varying 
function of R. Therefore, it  may be taken to be constant and obtained from the 
experiments. (This parameter equals unity if f (R ,  T )  = e-..) This approximation 
is further justified by arguing that it is equivalent to the principle underlying the 
Rayleigh-Ritz method. 
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In the present paper we derive the equations for the variation of shock energy 
and pressure, following the above arguments both when the ambient medium is 
uniform and when it is non-uniform. Specifically, for the latter we consider an 
isothermal atmosphere with an exponential variation of pressure and density and 
a constant acceleration due to gravity (see Lutzky & Lehto 1968). Now, in the 
equation expressing energy dissipation, if the shock strength is allowed to tend 
to infinity the rate of shock energy decrease, dD/dR, tends to zero. The second 
equation, with D = constant, leads to the solution which has the same form as the 
Taylor-Sedov solution. We now choose the similarity parameter v such that our 
solution exactly coincides with this solution. Thus, v becomes a parameter 
dependent on y = cp/cv, the ratio of specific heats, and on a (a = 2 , l  for the 
spherical and cylindrical symmetric cases respectively). If in the weak shock 
limit we choose v = $, the solution for the homogeneous medium again coincides 
with the well-known asymptotic formulae (Whitham 1950; Sedov 1959). We take 
the value of v to be the one given by Taylor-Sedov solution until the (non- 
dimensional) shock overpressure Ap = (p -po) /po  5 0.02, after which v is de- 
creased gradually to 5 when Ap+ 0. However, the solution at this stage becomes 
insensitive to the value of v since the term containing v in the differential equation 
for pressure becomes very small in comparison with the other term. The im- 
portant assumption t h a t  is made here is that this value of v works for the inhomo- 
geneous case too since its approximation is based on the thermodynamic 
behaviour of the particle after it crosses the shock, and is therefore independent 
of the inhomogeneity of the medium (cf. Dumond et al. 1946). The numerical 
results seem to justify this assumption. 

The outline of this paper is as follows. Section 2 gives the general differential 
equations governing pressure and shock energy variation as the shock propagates. 
Section 3 deals with the uniform ambient atmosphere, while the inhomogeneous 
ambient medium is discussed in § 4. The shape of a strong shock as it propagates 
is considered in 0 5 and concluding remarks are given in 0 6. 

2. Equations for shock overpressure and energy 
The details of the derivation of the equations governing the variation of shock 

overpressure and energy as the shock propagates are omitted here. The papers by 
Brinkley & Kirkwood (1947) and Nadezhin & Prank-Kamenetskii (1965) may be 
referred to for this purpose. The function D occurring therein is identified as 
Eo/2an initially, where E ,  is the energy of explosion at the source per unit 
areallength for a = 2,1, for spherical and cylindrical symmetry respectively. 
Subsequently it is the work function, giving the available mechanical energy in 
the shock at  a particular time. Thus, after introducing the factor 2an in D, we 
have 

dD/dR = - (2R)"np0h(p), (2.2) 
24-2 
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I "  =-  
Po y-  1 + ( y +  l ) z  

( 2 . 3 )  

Herep = P - Po is the pressure at  the shock in excess of the ambient pressure just 
ahead of it, at a distance R from the source; y = po/p, z = PIPo are measures of 
shock strength expressed by ratios of density and pressure across the shock 
respectively. The shock velocity U is a function of the overpressure p ;  the 
undisturbed pressure is Po(R) and the density po(R).  In the derivation of the above 
equations we have assumed the presence of a constant gravitational acceleration 
g with a view to solving the problem of shock propagation in an exponential 
atmosphere (see Lutzky & Lehto 1968) in 8 4. The parameter v is a function of the 
symmetry exponent a and y ( = c,/c,). The functions G and L are defined as 

where c is the speed of sound behind the shock. It may be noted that the equation 
of conservation of entropy along the particle line behind the shock is not explicitly 
used. Instead, the particle path in the p ,  v plane is followed from physical con- 
siderations; this path implies shedding of mechanical energy by the shock as heat, 
and hence its decay. 

3. Uniform ambient medium 
First we consider the case of a blast wave propagating into a uniform medium 

such that Po and po are constant. In the limiting case of infinite shock strength, 
h(p) + 0 so that the energy of the blast is conserved as mechanical energy avail- 
able for external work, and the solution of (2.1) reduces to the Taylor-Sedov 
solution as was shown in an earlier paper (Sachdev 1971, hereinafter referred to 
as I) provided that v(a, y )  is chosen suitably from the exact numerical solution 
of Taylor (1950) and Sakurai (1953). Table 1 gives these values for a = 2,  1 for 
different values of y. 

In the limit z+ 1 it can be easily verified that the (2 .1)  and ( 2 . 2 )  reduce to 

whose solution gives the correct asymptotic form for shock overpressure in this 
limit, namely Rp = Pl(log R/R,)-+ for the spherically symmetric case and 
R+p = P,[2(R4 - Rq)J-a for the cylindrically symmetric case provided v is chosen 
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to be g. Thus the solution for the blast wave problem as obtained by the BK 
theory has been forced to coincide with the exact solution in the limit of very 
strong and very weak shocks. Furthermore, if the value of v is taken to be the one 
given by the Taylor-Sedov solution until p 5 iO.02 the numerical results obtained 
from (2.1) and (2.2) show extremely good agreement with the exact numerica,l 
solution (see figures 1 and 2). In facti, in the weak shock regime, p 5 0-02, the 
contribution of the first term in (2. l),  which involves v and D ,  is very much smaller 

4 Y  1.6667 1.4 1.3 1.2 

2 2-3807 3.1158 3.7388 4.8097 
1 2.574 3.4078 - 5.363 

TABLE 1. Similarity parameter v as a function of CI and y 

10-2 lo-' 1 10' 

€2 

FIGURE 1. Shock overpressure ws. radius for various values of uh = h(P,/E,,)t for a 
spherically symmetric blast. ---, exact numerical solution, Lutzky Q Lehto (1968) ; 
-, present theory. 
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than the second term, so that change in the value of v will not make a significant 
difference to the solution. However, to conform with the analytic solution of 
(3.1) and (3.2) v may be slowly altered from its value vo to Q over the infinitely 
long range in which the weak shock overpressure tends to zero. Figure 1 (ch = co) 
gives the variation of shock overpressure with radius for a spherical blast wave 
propagating in air ( y  = 1-4), while figure 2 shows the corresponding solution for 
a cylindrical blast wave. The results obtained by the present theory agree very 
well with the exact numerical solutions of these problems by Lutzky k Lehto 
(1968) and Plooster (1970). 

10-2 lo-' 1 

R 

I0  

5 

1 

lo-'  
10' 

FIGVRE 2. Shock overpressure vs. radius for 8 cylindrically symmetric blast. ---, exact 
numerical solution, Plooster (1970); __ , present theory. 

4. Non-uniform medium 
In this section we consider the propagation of a blast wave in an exponential 

atmosphere. This problem has been numerically studied by Lutzky k Lehto 
(1968). At time t = 0 an amount of energy Eo is released at  the origin of a spheri- 
cally symmetric isothermal atmosphere. The initial stratification of pressure and 
density is determined by the condition that the atmosphere be in equilibrium 
with a constant gravitational acceleration 0, acting radially outward. Thus the 
initial pressure and density distributions have the form 

Here Y is the distance measured from the origin of explosion, P, and pc are the 
pressure and density a6 the origin respectively, h = Pc/p,g is the scale height of 
the atmosphere and S = g cos q5, the component of acceleration due to gravity 
in a direction making an angle $ with the downward vertical. While the atmo- 
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sphere is assumed to be spherically symmetric, the density and pressure variation 
along a ray is taken according to (4.1) and (4.2). To keep the calculations stable 
in the spherically symmmetric system a uniform gravitational acceleration is 
included in the equations. For this particular model (2 .2)  and (2.3) are simplified 
with the help of the Rankine-Hugoniot conditions and (4.1) and (4.2). The over- 
pressure p ,  density p, distance R and the energy function D are normalized by 
their central undisturbed values P,, p,, (P,/E,)+ and E, respectively. Finally, we 
have the equations 

5y-1 y f l l  l+h2 
L = -  +--+- 2y 27 2 X + h 2 ’  

Here ~ ( y ,  2) is the similarity parameter for the spherically symmetric case 
obtained from the Taylor-Sedov solution as explained in $ 3 .  It is implicitly 
assumed that this parameter serves for the inhomogeneous medium also. The 
non-dimensional parameter 

is a measure of the importance of the inhomogeneity, initial energy of explosion 
and the density and pressure at the origin in the undisturbed atmosphere. It also 
describes a whole range of problems for different combinations of these constants. 
For example, if g+ 0 so that g h  -+ 03, we have a uniform undisturbed atmosphere 
with constant pressure P, and density pc. As the value of gh decreases, the atmo- 
spheric inhomogeneity strengthens if other parameters (P, and E,) are held 
constant. Similarly, for constant values of the scale height h (which is a measure 
of stratification) and the central pressure P,, a smaller value of g h  corresponds 
to larger value of the energy of explosion E,. 

To compare our results with those from the exact numerical solution of Lutzky 
& Lehto (1968) we integrated (4.1) and (4.2) with the initial conditions at  
R, = 0.025, D = 1 and p = 10005 as obtained from the von Neuman formula 
p = 0-157/R3, assuming the solution up to R, = 0.025 to be governed by the 
Taylor-Sedov-von Neuman solution. It is well known that in the initial stages 
(R N 0.1) the effect of non-homogeneities on blast-wave propagation is negligible. 
This is borne out by the present calculations as well as by those of Lutzky & 
Lehto. Figure 1 shows the comparative study of results obtained by the present 
theory and the exact numerical solution of Lutzky & Lehto for f lh  = 03, 0.5 and 
0.1. The agreement is excellent even for (Th = 0-1, when the inhomogeneities of 
the undisturbed medium become very strong. It is interesting to compare the 
magnitude of the three terms on the right-hand side of (4.1) which, respectively, 
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give essentially the effect of the energy of explosion, the curvature of the shock 
and the atmospheric stratification. First, in the case of a uniform atmosphere, 
vh = 00, the last term disappears. The other two terms play a comparable role 
in the initial stages of blast-wave propagation, the first being larger in magnitude 
than the second, but after the shock has propagated one dynamic length, R - 1, 
the second term assumes a major role. It becomes more important as the shock 
propagates further until finally the first term becomes negligible compared with 
the second when the shock has propagated far away from the source. When 
vh =k 0 the last term, representing the influence of inhomogeneity of the medium, 
plays a role which depends on the strength of the inhomogeneity. For example 
when vh = 0.1, so that the stratification is quite intense, the last term is more 
important than the other two except in the very early stages of shock propaga- 
tion, when all the three are comparable, 

1 I 
I 

FIGURE 3. Shock envelope at different times for y = 1.2, with length scale A and 
T = t(E/4rpBA5)*. -, Laumbach & Probstein; ---- , Andriaken et al. ; 0, present 
theory . 

5. Shape of strong shock 
We briefly discuss the shape of a strong blast wave as it propagates, under the 

assumption of local radiality (Laumbach & Probstein 1969; Lutzky & Lelito 
1968). Figure 3 shows the comparison of the shock shape as obtained by 
Laumbach & Probstein (1969)) Andriakin et al. (1962) and the present theory. 
The formulae in our case are easily obtained from I: 
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In the above, the upper and lower sign correspond t o  the medium with expo- 
nentially decreasing and increasing density respectively, and 6' gives a particular 
ray direction. It is found that the agreement of all the three approaches is excel- 
lent in the lower half of the shock surface which propagates in a medium with 
exponentially increasing density. In  the upward direction, the results corre- 
sponding to the present theorylie close to those of Laumbach & Probstein (1969) 
except for the upper portion of the shock after the shock has propagated far away 
(figure 3). In  fact, after propagating a certain distance the strong shock assump- 
tion becomes invalid. This, at  least partly, explains the disagreement for the 
results as obtained by the present theory with those of Laumbach et al. shown 
in I. The shock velocity climbs much faster after the minimum in our case and 
therefore the shock goes to infinity earlier than in the case of Laumbach & 
Probstein (1 969). 

6. Concluding remarks 
A modification of the Binkley-Kirkwood theory is presented here and gives an 

excellent description of the propagation of a blast wave originating from a point 
source in the entire regime from the stage when it is very strong right up to its 
final decay. The results for a spherically symmetric exponential atmosphere 
agree very well with the exact numerical solution of Lutzky & Lehto (1968), 
even when the inhomogeneityis strong. The important feature of the BK theory 
is its emphasis on the dissipation of the shock-wave energy as heat and hence the 
loss of mechanical energy for doing work against the undisturbed pressure, and 
on the subsequent shock decay. This point has also been noted by Taylor (1950)) 
who referred to this heat loss as the energy wasted and unavailable for shock 
propagation. Since this theory takes account of this energy-shedding right from 
the beginning, there will be slight departure from the Taylor-Sedov solution in 
the early stages of blast propagation since the Taylor-Sedov solution coincides 
with the present solution only when the shock strength tends to infinity. The 
right-hand side of (2.2) tends to zero when z -+ co, but as z becomes finite even 
though large, it  begins to rise sharply and then decreases finally, to settle down 
to a small value when the shock has become comparatively weak. It is worth 
while to mention that the effect of changing the initial point, for example from 
R, = 0.05 to R, = 0.025, is not significant except in the very early stages of 
propagation, when the explosion energy begins to dissipate earlier. In  any case 
the solution in the early stages, as mentioned above, will differ slightly from the 
Taylor-Sedov solution, wherein the shock strength is infinitely large, while in 
the present theory the shock strength initially is very large but finite. On the 
other hand, it is remarkable that the minimum for the shock strength in the 
inhomogeneous case remains almost unaltered by a small shift in the initial point. 

It is not so simple to find the details of flow behind the shock in the present case 
as was the case in I .  The formulae are comparatively cumbersome and are 
therefore omitted here. 
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